To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 45906 | Accepted: 24276 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner: 9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2
Sample Output
15
Source
翻译:
- 总时间限制:
- 1000ms 内存限制:
- 65536kB
- 描述
- 已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵。 比如,如下4 * 4的矩阵 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 的最大子矩阵是 9 2 -4 1 -1 8 这个子矩阵的大小是15。 输入
- 输入是一个N * N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N 2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。 输出
- 输出最大子矩阵的大小。 样例输入
-
40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2
样例输出 -
15 第一种
/*准备一个数组F[i,j]来存到第i,j格时的矩阵和(类似于前缀和)对于一个子矩阵[x1,y1,x2,y2]//x1,x2代表左上角和右下角的横坐标有 S[x1,y1,x2,y2] = f[x2,y2] - f[x1-1,y2] - f[x2,y1-1] + f[x1,y1];*/#include#include using namespace std;#define N 101int ans=-0x7f,n,a[N][N],f[N][N];int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++){ scanf("%d",&a[i][j]); f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-1]+a[i][j]; } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=0;k+i<=n;k++) for(int l=0;l+j<=n;l++){ int xx=i+k,yy=j+l; ans=max(ans,f[xx][yy]-f[i-1][yy]-f[xx][j-1]+f[i-1][j-1]); } printf("%d\n",ans); return 0;}
第二种
#include#include using namespace std;#define N 101int a[N][N],n,ans=0;int main(){ scanf("%d",&n); for(int i=1,x;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&x),a[i][j]=a[i-1][j]+x;//列前缀和 for(int i=1;i<=n;i++) for(int j=i;j<=n;j++){ int tmp=0; for(int k=1;k<=n;k++){ int num=a[j][k]-a[i-1][k]; if(tmp>0) tmp+=num; else tmp=num; ans=max(ans,tmp); } } printf("%d\n",ans); return 0;}